
Ring-LWE: An Efficient PQC Public Key
Encryption Scheme

N.P. Smart

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB.
United Kingdom.

March 21, 2017

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 1



Outline

Lattices

Lattice Reduction

Lattices and Rings

Standard and Ring LWE

Basic Ring-LWE Encryption Scheme

Coding Theory

Fourier Transforms

CCA Secure Scheme

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 2



Lattices

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 3



Lattice Definition

A discrete additive subgroup of Rm.

Let
B = {b1, . . . ,bn}

be an ordered set of vectors in Rm. With this we generate a lattice

LB =

{
n∑

i=1

λibi |λi ∈ Z

}
.

We shall also denote (b1, . . . ,bn)> by B.
I B is called the basis matrix

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 4



Illustrative Example 1: Z2

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 5



Illustrative Example 2:

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 6



Lattice Bases

If B1 and B2 are bases of the same lattice if and only if

B1 = UB2

for some integer matrix U with determinant 1 or -1.
We define the fundamental parallelepiped associated to B as

P(B) =

{
n∑

i=1

xibi |xi ∈ [0,1)

}
.

Roughly speaking
{P(B) + v |v ∈ LB}

are the regions between the lattice points.
I They partition Rm.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 7



Fundamental Parallelepiped Illustration

P(B)

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 8



Fundamental Parallelepiped Illustration 2

P(B’)

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 9



Lattice Determinant

We define a lattice determinant det(LB) to be the volume of P(B).

det(LB) = Vol(P(B)) =
∏

i

‖b∗i ‖ = |det(B∗)| .

If m = n, then
det(LB) = |det(B∗)| = |det(B)| .

More generally

det(LB) =
√
|det(B>B)|.

The determinant is well-defined since bases differ by a factor of ±U
where U is unimodular.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 10



SVP and CVP

Given a lattice basis B.

The SVP problem is the problem of finding a vector v ∈ LB \ {0}
such that ‖v‖2 is minimal.

The CVP problem is the problem of given u /∈ LB find a vector
v ∈ LB such that ‖v − u‖2 is minimal

The are known to be hard problems.
I Suspected exponential complexity

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 11



Easy SVP Problem

If we can see the complete lattice, the SVP problem is trivial.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 12



Easy SVP Problem

If we can see the complete lattice, the SVP problem is trivial.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 13



Non-Uniqueness

Note also that the shortest vector is not unique.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 14



Slightly Harder SVP Problem

Given only a random basis, the SVP becomes harder.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 15



CVP Illustration

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 16



CVP Illustration

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 17



Lattice Reduction

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 18



Gaussian Reduced Basis

Can often solve CVP/SVP using basis reduction

In two dimensions this is a classical algorithm

A basis {b1,b2} is said to be Gaussian Reduced if
1. |µ1,2| ≤ 1

2

2. ‖b1‖ ≤ ‖b2‖.
where

µ1,2 =
〈b2,b1〉
〈b1,b1〉

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 19



Reduced Basis Illustration

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 20



Gaussian Reduction Algorithm

DO

1. IF ‖b1‖ > ‖b2‖ THEN swap b1 and b2

2. µ1,2 = 〈b2,b1〉
〈b1,b1〉

3. b2 := b2 −
⌈
µ1,2

⌋
b1

WHILE ‖b1‖ > ‖b2‖.

RETURN (b1,b2)>.

To obtain a Speed/Approximation Trade-off we introduce
1/2 < δ < 1 and replace the second condition.

1. |µ1,2| ≤ 1
2

2. δ ‖b1‖ ≤ ‖b2‖.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 21



Generalisation to n Dimensions

There are various ways we could attempt to generalise Gaussian
Reduction to n dimensions.

Lovasz’ solution, named after Lenstra, Lenstra and Lovasz, is the
LLL algorithm.

It outputs a roughly orthogonal basis comprising of some short
vectors.

It terminates in polynomial time in n.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 22



An LLL Reduced Basis

1. |µi,j | ≤ 1
2 for all 1 ≤ j < i ≤ n.

2. δ
∥∥b∗i
∥∥2 ≤

∥∥b∗i+1 + µi+1,ib∗i
∥∥2 for i = 1 . . . n − 1.

I µi,j are the standard Gram-Schmidt coefficients.
I We say B is LLL reduced with respect to δ, (or δ − LLL reduced)

if both conditions are satisfied.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 23



An LLL Reduced Basis

The first LLL condition produces an approximation to
Gram-Schmidt.

I We are forced to approximate since our basis must span the
same lattice.

I Makes the basis roughly orthogonal.

The second condition makes the basis vectors small, and roughly in
increasing size

I So the first basis vector is an appromixation to the short-vector
in the lattice

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 24



Lattices and Rings

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 25



Size Matters

A major issue in using lattice in cryptography is we seem to need to
hold a lot of data.

After all a lattice basis requires storing n × n elements!

We want to be able to reduce this to n elements.

For this we use rings of polynomials

R = Z[X ]/(F (X )),

where deg(F ) = n.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 26



Polynomial Rings

Clearly an element in a ring of polynomials will require n elements to
define it

I One for each coefficient.

a 7−→ a(X ).

This is the vector representation of the ring.
I We can clearly add vectors/polynomials.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 27



Polynomial Rings

We can also, in a polynomial ring, multiply vectors/polynomials to
get another polynomial of degree n

c = a · b (mod F ).

We can think of this as vectors by looking at the matrix
representation of the ring

c = Ma · b.

i.e. Ma is a matrix (depending on a) which acts like multiplication by
a on vectors.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 28



Matrix Representation

So what does Ma represent?

All the vectors c = Ma · b as b ∈ Zn define a lattice

This is the lattice of the ideal of R generated by the polynomial a

Finding a good basis for the lattice generated by Ma is equivalent to
finding a short generator of the ideal generated by a.

〈a〉 = {c(X ) = a(X ) · b(X ) (mod F (X )) : b(X ) ∈ R}
≡ {c = Ma · b : b ∈ Zn}.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 29



Standard and Ring LWE

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 30



Linear Algebra With Noise
LWE (Learning With Errors) is basically linear algebra with noise.

In usual linear algebra we try to solve the equation

y = A · x

for some matrix A

In LWE we do not give you y but a vector with some errors in

y′ = A · x + e,

where e is “small” in some sense.

We can think of this as like a decoding problem for the linear code
defined by the matrix A.

Or equivalently this is a CVP problem, as e is small.
N.P. Smart

Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 31



Linear Algebra With Noise

However, using the above definition in crypto is a bit awkward as
numbers are unbounded

I All vectors are in Zn

I We would like to work modulo an integer q, to bound the sizes

So we define our problem as

y = A · x + e (mod q),

i.e. we are given y ∈ Zn
q and are asked to find x, given e ∈ Zn

q has
“small coefficients”

I Small means when reduced into the interval (−q/2,q/2).

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 32



Linear Algebra With Noise
This is actually another lattice problem, for the non square
generating matrix ( A | q · In )...

y = ( A | q · In ) · x + e.

We can also define a Ring version of LWE (called Ring-LWE)

Given a polynomial a we are asked to solve

y = (a · x + e (mod F )) (mod q)

for a polynomial e with small coefficients.

The underlying ring is

Rq = Zq[X ]/(F (X )).

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 33



C’Mon Feel The Noise

So how do we pick the small noise vector/polynomial?

There are various ways we could do this
I Sample unformly from [−b, . . . ,b] for a small value of b.
I Sample from [−b, . . . ,b] using a non-uniform distribution.
I Sample (in the ring case) from the “complex embedding” in

some way and then “pull back”

Each method has its own advantages/disadvantages
I Ease of implementation.
I Ease of analysis of resulting bounds.
I Worst-case/Average-case results (mainly for theory wonks!).

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 34



Gaussian Noise
For simplicity we will use sampling of an approximation to the
discrete Gaussian...

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 35



Sampling Made Easy

Take a normal Gaussian of standard deviation σ.

We want to approximate a discretized version of this.

Choose B =
⌈
2 · σ2 − 1

⌋
, then we can compute an approximation by

B∑
i=0

(bi − b′i )

where we select bi ,b′i ∈ {0,1} uniformly at random.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 36



Basic Ring-LWE Encryption
Scheme

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 37



Key Generation

A public key consists of a Ring-LWE instance (a,b), a private key is
the underlying secret polynomial s such that

b = a · s + e′,

where e′ is “small”
I We pick however s also to be “small”

So key generation goes as follows:
1. a← Rq.
2. s,e′ ← χn

σ.
3. b = a · s + e′ in Rq.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 38



Encryption
This works by randomizing the LWE instance given by the public key
and then embedding the message µ ∈ {0,1}n

1. v ,e,d ← χn
σ.

2. c0 = b · v + d + ∆q · µ.
3. c1 = a · v + e

where
∆q =

⌊q
2

⌋
.

Note

c0 − s · c1 = (b · v + d + ∆q · µ)− s · (a · v + e)

= ((a · s + e′) · v + d + ∆q · µ)− s · (a · v + e)

= ∆q · µ+ e′ · v + d − e · s
= ∆q · µ+ “small”.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 39



Decryption

Since we have
c0 − s · c1 = ∆q · µ+ “small”.

we decrypt as follows:

1. f = c0 − s · c1.

2. µ =
∣∣∣ ⌈ 2

q · f
⌋ ∣∣∣.

BUT this only works if the “small” is small enough.
I We need to fix the parameters so that small is small enough

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 40



Three Problems
If we fix the parameters so that “small” is guaranteed to be always
small enough we get huge parameters

I Like those seen in FHE schemes!
So we need to apply some coding theory to make the parameters
smaller.

We do lots of operations like a · b (mod F ) which are costly, O(n2).
I Would prefer O(n)

If we pick F and q well we can use FFT techniques

The above scheme is not CCA secure it is only CPA secure
I Need a way of transforming to get a CCA secure scheme

We now address these three problems.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 41



Coding Theory

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 42



Coding Theory
We could just apply some complex BCH code to get a really
excellent encoding scheme

I Good error correction properties.
I Complex to code correctly/well due to complex decoding

algorithm.
I Open source good implementations are available, but they are

polluted by the GPL.
However, these are overkill as we only need to correct very few bits
in practice.

We pick a (16,8,5) linear code.

This takes a byte and expands it into two bytes
I Allows us to correct a byte in the presence of two error bits in

the 16

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 43



The (16,8,5) Code

Generator Matrix:

G =



1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1

0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1

0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1

0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1

0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1



∈ F8×16
2

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 44



The (16,8,5) Code

Parity Check Matrix:

H =



0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0

1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0

1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0

0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1



∈ F8×16
2

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 45



The (16,8,5) Code
To encode we take a byte b and represent it as a bit vector b ∈ F8

2
and then compute

c = b ·G.

To decode we compute the syndrome

s = H · c.

We can then look up the resulting decoding value in a simple look
up table of size 137 = 1 + 16 + (16 · 15)/2.

I LUT has one entry for each zero, one and two bit error.
I LUT gives the error vector which we can then add onto c to

recover the actual message.
One can do this in constant time if one is worried about
side-channels.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 46



Coding Theory

If the per-bit error rate is p0 then the probability we recover a byte
correctly using this encoding scheme is

p1 = (1− p0)16 + 16 · (1− p0)15 · p +
16 · 15

2
· (1− p0)14 · p2

0.

When p0 ≈ 2−91 we obtain

p1 ≈ 1− 2−263.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 47



Coding Theory
Given a vector b in Fn

2 where n is a multiple of eight we can apply
the encoding scheme n/8 times in parallel to obtain a vector of
length 2 · n.

c = Encode(b).

Likewise we can decode a bit-vector vector of length 2 · n to a
bit-vector vector of length n via

b = Decode(c).

If p0 ≈ 2−91 probability of transmitting 64 bytes (i.e. 512 bits)
correctly is

p2 = p64
1 ≈ 1− 2−256.

We encode the 64 bytes as 128 bytes.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 48



Fourier Transforms

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 49



Fourier Transforms

We pick F and q for our Ring LWE problem in a special way

1. F = X N + 1 = X 2n
+ 1

2. q ≡ 1 (mod 2 · N).

This implies that Fq contains a (2 · N)th root of unity.
I Let α denote a mutually agreed one.

Since F = X 2n
+ 1 picking our noise via sampling Gaussian

coefficients is essentially the same as sampling in the canonical
embedding and pulling back.

Idea is to represent a polynomial a(X ) by its evaluations at the roots
of unity αi for odd i ∈ [1, . . . ,2 · N].

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 50



Fourier Transforms

Evaluating a(X ) at the odd powers of α is the same as evaluating
the FFT of a(X ).

a← FFT(a) ∈ FN
q .

Interpolating the vector back to a polynomial is the same as
evaluating the inverse FFT of a.

a← FFT−1(a) ∈ Rq.

Since N is a power of 2 the FFT is fast

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 51



Fourier Transforms

If we define ⊕ and ⊗ as coordinate wise addition and multiplication
modulo q then we have

a⊕ b = FFT(a + b),

a⊗ b = FFT(a · b).

This means that operations in our ring can be done in time O(n) as
soon as we have passed into the FFT domain.

I Mapping to/from FFT domain takes time O(n · log n).

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 52



Fourier Transforms

Some might worry about picking X N + 1 for N a power of two, as this
field has many subfields.

One way around this would be to pick

F = X N + X N−1 + . . .+ X + 1

where N + 1 = p = 2 · p′ + 1, where p and p′ are prime.

Such safe-prime cyclotomics only have two subfields, and are
almost as efficient as choosing a power-of-two cyclotomic.

The FFT methodologies transfer over by using Bluestein’s FFT
algorithm, as used in HELib.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 53



CCA Secure Scheme

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 54



CCA Parameters

We are going to need a ring size of N = 1024 bits
I Want to transmit keys of size 256 bits.
I Padding scheme needs 256 bits of randomness.
I Our encoding scheme doubles this to 2 · (256 + 256) = 1024.

We pick a Gaussian standard deviation of σ = 3.2

We therefore pick q = 120833
I Gives good security.
I Per bit error rate of p0 ≈ 2−91.

We first define a CPA secure scheme which includes the FFT and
coding theory modifications...

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 55



CPA Secure Scheme: KeyGen

1. a← Rq.
2. s,e′ ← χσ.
3. a← FFT(a).
4. s← FFT(s).
5. e′ ← FFT(e′).
6. b← (a⊗ s)⊕ e′.
7. sk← s.
8. pk← (a,b).
9. Return (pk, sk)

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 56



CPA Secure Scheme: Enc1(m, pk)

The encryption mechanism takes as input the public key pk = (a,b)
and a message m ∈ {0,1}b, where b < N/2.

1. µ← Encode(m), treat µ as an element in R2 (this involves
applying Encode a total of db/8e times).

2. v ,e,d ← χσ.
3. v← FFT(v), e← FFT(e).
4. x ← d + ∆q · µ mod q.
5. x← FFT(x).
6. c0 ← (b⊗ v)⊕ x.
7. c1 ← (a⊗ v)⊕ e.
8. Return (c0,c1).

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 57



CPA Secure Scheme: Dec1(m, pk)

On input of a ciphertext c = (c0,c1) and a secret key sk = s the
decryption is performed as follows:

1. f← c0 	 (s⊗ c1).
2. f ← FFT−1(f).
3. Convert f into centered-representation.

4. µ←
∣∣∣⌊ 2

q f
⌉∣∣∣. Note µ can be considered as a string of 2 · b bits,

as N > 2 · b we only take the first 2 · b bits of µ and ignore all
non-zero trailing bits as “errors”.

5. m← Decode(µ).
6. Return m.

Note we could compress c0, when m is small, by inverting the FFT
for c0 in the encryption routine and only transmitting the coefficients
needed in decryption.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 58



CCA From CPA

To define a CCA scheme from the above CPA scheme we use the
Fujisaki-Okamoto transform:

If the original encryption scheme (Enc1,Dec1) can encrypt
messages of b bits in length, this this IND-CCA scheme encrypts
messages of b − 256 bits in length.

The scheme makes use of a hash function H which outputs at least
256-bit hash values, and takes as inputs bit strings of length b.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 59



CCA Secure Pubic Key Scheme
Enc2(m, pk):

1. s ← {0,1}256.
2. µ← m‖s.
3. r ← H(µ).
4. (c0,c1)← Enc1(µ, pk), where all randomness is generated from

the seed r .
5. Return (c0,c1).

Dec2(c, sk):
1. µ← Dec1(c, sk).
2. m‖s ← µ, where s is 256 bits long.
3. r ← H(µ).
4. c′ ← Enc1(µ, pk), where all randomness is generated from the

seed r .
5. If c 6= c′ then return ⊥.
6. Return m.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 60



CCA Secure Key Encapsulation

For key-encapsulation in post-quantum schemes we aim to transmit
a key of 256 bits in length.

Thus we can easily adapt the previous IND-CCA encryption scheme
to do this by selecting a message of size 256 bits at random.

I So b − 256 = 256.
I Which implies b = 512.
I So N > 2 · 512 = 1024.
I This is why we wanted N = 1024 for our ring.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 61



CCA Secure Key Encapsulation

Key Encapsulation: This takes as input a public key pk and outputs
an encapsulation c = (c0,c1) and the key k it encapsulates.

1. k← {0,1}256.
2. (c0,c1)← Enc2(k, pk).
3. Return ((c0,c1), k).

Key Decapsulation: This takes as input a secret key key sk and an
encapsulation c = (c0,c1), and outputs the key k it encapsulates, or
the error symbol ⊥.

1. k← Dec2(c, sk).

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 62



CCA Secure Key Encapsulation

When used with our compression technique for ciphertexts the
above method is a bit expensive.

Instead we can use one of Dent’s construction, which can save on
transmitting 512 field elements, resulting in a 25 percent reduction in
ciphertext size.

However, Dent’s proof of this construction is non-tight.
I Because reduction is to a generic OW-CPA encryption scheme

By reworking this proof, and reducing to the Ring-LWE problem, we
can obtain a tight proof.

I Thus working with Ring-LWE is better.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 63



Dent’s CCA Secure Key Encapsulation
Key Encapsulation:

1. x ← {0,1}256.
2. r ← H(x).
3. k← K (x).
4. (c0,c1)← Enc1(x , pk), where all randomness is generated from

the seed r .
5. Return ((c0,c1), k).

Key Decapsulation:
1. x ← Dec1(c, sk).
2. r ← H(x).
3. k← K (x).
4. c′ ← Enc1(x , pk), where all randomness is generated from the

seed r .
5. If c 6= c′ then return ⊥.
6. Return k.

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 64



Questions?

N.P. Smart
Ring-LWE: An Efficient PQC Public Key Encryption Scheme Slide 65


	Lattices
	Lattice Reduction
	Lattices and Rings
	Standard and Ring LWE
	Basic Ring-LWE Encryption Scheme
	Coding Theory
	Fourier Transforms
	CCA Secure Scheme

